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Summary—The  subject of the paper is the analysis of temperature distribution

for bodies subjected to kinetic heating and heat losses by radiation, also in the

case of boundary conditions depending upon time and upon surface temperature

distributions.

In Part 1, the simple solution for the concentrated heat source in a hetero-

geneous body of whatever shape is found. By considering a surface layer of

timewise and spacewise variable heat sources, the so-called "Q-Solution" is

obtained. By combining the "Q-Solution" with the boundary conditions, an

integrodifferential equation with respect to time is obtained, which can be easily

integrated step by step, despite its non-linear nature.

Part II deals with the solution of typical problems. It contains the application

of the theory to the hollow hemisphere, and to the hollow semicylinder. It also

contains, for sake of comparison, the solution of a classical two-dimensional

problem, of rather difficult analytical solution.

Part III contains numerical applications and results, including also evaluation

of thermal stresses for the hollow hemisphere. Tables and graphs complete

the work.

LIST OF SYMBOLS

REFERENCE DIMENSIONAL QUANTITIES

K*  reference thermal conductivity
c*  reference specific heat per unit volume

1  reference length
lac*
	 reference time
K*
Q* reference heat flow per unit surface per unit time


Q* reference heat flow per unit volume per unit time

1
reference coefficient of kinetic heating
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Q*1

K*


K* K'T
1 1Q*)

reference temperature

reference coefficient of radiation

NON-DIMENSIONAL QUANTITIES

non-dimensional
non-dimensional
non-dimensional
non-dimensional
non-dimensional
non-dimensional
non-dimensional
non-dimensional
non-dimensional
non-dimensional
non-dimensional

thermal conductivity
specific heat per unit volume
time
rectangular co-ordinates
polar co-ordinates
cylindrical co-ordinates
heat flow per unit surface per unit time
heat flow per unit volume per unit time
coefficient of kinetic heating
coefficient of radiation
temperature

a

SPECIAL SYMBOLS

Introduction

Taw
TW

a 7' 04

Part I

recovery temperature
surface temperatures
functional dependence of Q on Tw
heat supplied to the body through radiation, per unit area
per unit time

V

ZIK

1

body volume
body boundary
normal to W
part of V inside the body
linear differential operator

time derivative of uniform body temperaturef, c di/

TF = T — t T,
Un eigenfunctions of system (5.1)

pn2 eigenvalues of system (5.1)
coefficients of expansion of T

P, P' generic points of the body
A dummy variable of integration with respect to time

C(P, P' ; t, A) temperature produced at time t, at point P, by a step unit
source generated at time A at point P'

v instantaneous point source of heat in P'
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Ptt-, Ply generic points of W
Tiv (Pw, t) temperature at point  Pw,  at time t

5 time interval
nz8 generic time  (m =  0, 1, 2, .

[Q(Pw)] m heat flow at  Pw  and t = rn6

[JQ(Piv)]i [OP — [VP w)li-
f(P)  non-uniform initial temperature (if any)

bn coefficients of expansion of  f(P)

Part 2

Hemisphere and Semicylinder

13  non-dimensional inner radius of hemisphere or semi-
cylinder (referred to outer radius)

A  constant of normalization

}

functions of pr

sth Legendre polynomial
from (3.2)

Os from (5.2)

Stiffener Section

a, 17,  dimensions of stiffener section
indetermined constants

e„„ s, p ms , s m coefficients of compatibility equation

Appendices

P,,Q,  functions of pr

Pm coefficient of pm,
J„ J2, Q', Q" functions of p for linearization

Part 3

g  gravity acceleration
M  Mach number

ar radial stress
as  circumferential stress

(P)I linearized functions
Y2(P) J

t. dimensional time (Figs. 3a .3, 3b .3)
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INTRODUCTION

THE design of an aircraft or missile is often ruled by the transient-
temperatures of its external surface, due to kinetic heating and radiation.

At each point of the external surface IV, the relationship

Q h[T. Tiv] - a(  T11,4 - T04) = 5-(t, Tw) (1.I)

between temperature  Tw  and surface heat flow  Q  is customarily
admitted", 2, 3)• In equation (1.1), the symbol denotes a functional
dependence of the heat flow  Q  at any point of W on the temperatures at
all points of IV itself. In general, in fact, the parameters  h, Taw, a, To
appearing in equation (1.I) must be considered to be four functions
not only of time (as speed and altitude of the body are varying), but also
of the unknown distribution of surface temperatures. When those four
functions are given, e.g. from tests data, the problem arises how to study
the heat conduction in the body with the appropriate boundary condition
(1.1). Since of the complicated non-linear form of such boundary con-
ditions, neither classical methods, nor those based on Laplace transform"'
seem to be adequate for the problem being considered.

The present analysis provides the solution for a heterogeneous body
of whatever shape by means of an integro-differential equation which
can be easily integrated step by step, the time being the only variable
of integration.

Such integro-differential equation is obtained by combining equation
(1.I) with a linear solution which will be hereafter called "0-solution".
The Q-solution provides the timewise variation of surface temperature
due to whatever distribution of the surface heat flow Q. In the present
analysis, the Q-solution is found to have a simple analytical expression
which can be readily obtained, in explicit form, for whatever body. Such
analytical expression is obtained by using a fundamental solution for
unsteady heat conduction problems, which is also found in the paper.

The Q-solution can also be directly combined with wind-tunnel tests,
the latter ones replacing equation (1.1), to get the solution to the prob-
lem. For the wind-tunnel tests of such analytical experimental procedure,
only the similarity of the wind-tunnel flow field (including temperature
and heat flows at the body surface), and not the thermal similarity inside
the body, is required.

PART 1

A GENERAL APPROACH TO

HEAT CONDUCTION PROBLEMS IN SOLIDS


WITH VARIABLE AND NON-LINEAR

BOUNDARY CONDITIONS

A Fundamental Solution for the Heterogeneous Finite Body

A body of volume V, bounded by one or more surfaces, denoted al-
together as IV, is considered. The body, initially at zero temperature, is
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unheated everywhere, except in a small volume E, where, starting from
t = 0, a constant heat flow equal to 1/ E per unit volume per unit time,
is applied.

At the time  t,  the variation from zero of the temperature  T  satisfies
the equations:

aT
q -+ZIKT at '

aT
= 0 on W; for  t  0;  T =  0 (2.1)

In equations (1.1)(2.1),  c  is the space-varying specific heat per unit
volume; the operator JK is expressed e.g., in rectangular coordinates—
by (alax)[K(blax)] (a/ay) [K (alay)] (alaz)[K(blaz)], where  K  is the
space-varying thermal conductivity of the body. Finally, u denotes the
normal to W.

The problem depicted by equations (1.1) and (2.1) is considered, first of
all, as  t cc .  After a very long time, a very great amount of heat has
entered the body, and the temperature must be everywhere very great.
It must also be almost uniformly distributed in the body because only
finite, timely constant, temperature differences are required to let the
finite heat flow  q  enter the body. Since the time derivative of the uniform
temperature of the body, as  t cc, is clearly given by i = (1/fr c d  V),
the above considerations suggest that the solution  T  of (1.1) and (2.1)
can be put in the form:

T = _  T„  (3.1)
c  d  V

It is seen that TE must start from zero, and approach, as  t -± co, a
steady solution. Therefore the following expression is chosen :

TE = ant1„(1 — exp P02t) (4.1)

where the  a„'s  and pn2's are constants, and the  Un's  are functions of space
variables only. By introducing (3.1) and (4.1) into the system (1.1) and
(2.1), the following conditions are deducted:

	

LIKun ±cp.2un= 0   = 0 at W n = 1, 2, . . . (5.1)
aun
av

in  V — E

(6.1)

in E

LIK„anUn = cit, — q =
c  d  V

1

v c  dV E
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It is seen that the  p„2's  and the U„'s are the eigenvaluesand, respec-
tively, the eigenfunctions of the problem (5.1). Since  K  and  c  cannot
become negative, the pn2's are always real and positive, and the series

	

„  is generally'convergent.The  Un's  are supposed to be normalized

so that:

	

/ 0 if  n s
dV — (7.1)

	

1 if  n = s

f,dV
in  V — E

—Y„anpn2Un = (8.1)
1 1

—  — in E

f, c d V c€

When the series (8.1) is regular enough, the coefficients an can be
obtained by multiplying both sides of equation (8.1) itself by  cun  and
performing the integration all over the body.

Remembering (7.1) it is thus got:

	

anPn2
1 1'

dV
cUn dV + — Un dV n = 1, 2, .

fICr

	. .
E

The integral, fj, cU,, dV, is zero because equations (5.1) are satisfied
by pn = 0 and  Un = 1/-V( c dV) const. (also because of the theorem
of divergence).

	

When E 0 around a point  P', 11E fEL n dV Un(P).
Therefore:

1
	 LIn(P') (9.1)
pn2

'Ile above results can be summarized and generalized in the formula:

— U„(P)U„(P')

	

C(P,P' ;t,  A)=  t 1 exp [
npn2

—pn2(t —  A)])
4, 	 I

(10.1)
C(P, P'; t,  A) is the increase of temperature produced at time  t  and
point  P,  by a step unit heat source generated at time A and point  P'.

It is of interest to point out the fact that the part of the right side of

equation (10.1) which is independent of  t  {i.e. 1-.„[Un(P)un(P')/Pnll

has an expression quite analogous to the well-known formula providing
the static influence function of a structure as a bilinear expression of
modes of vibration of the structure itself.

After introduction of equation (5.1), equation (6.1) becomes:

1
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When the series of the left side of (10.1) can be derived termwise, the
instantaneous point source of heat in a finite heterogeneous point source
is obtained:

1
—

c dV  n

In the particular case where the body is an infinite homogeneous
medium, from equation (10'.1) and by using Fourier's integral, the well-
known solution given, e.g. by Ref.4, (2) is obtained.

Formula (10.1) enables us to write the expression of the temperature
T(P, t) at time t and point P due to whatever time and space varying
distribution q(P' , t) of the heat flow per unit time and volume:

T(P,t)-= f C(P,P' ;t, =0)q(P' ,t =0) + JdA [ c(P,P';t, A)(1 }*

v
at t-A

0

(11.1)

From the final equations (10.1) and (11.1) it is seen that the general
problem is solved once the problem (5.1) is solved. Several methods are
available", 7) to determine the eigenvalues and the eigenfunctions of
the problem (5.1) which is essentially the problem of the natural modes
and frequencies of vibration of a particular free body whose stiffness and
mass per unit volume are K and c respectively. In the following, a
method of linearization(8, 9) to solve such a problem will be used.
Details will be given in Part 2, Appendix 2.
The Q-Solution

Formula (11.1) is also adequate to solve the case where heat is supplied
to the body through the boundary W, as in the problem of kinetic heating
and radiation, and not in the body volume. In such a case, the heat flow
q must be supposed to be zero everywhere, except in a solid layer of small
thicknessdv at the surface W, where q = Q/dv.

Formula (11.1) then becomes:

T(P, t) =f dW'tC(P, P' w ; t, A= 0)Q(P' )v, t = 0) +

d [c(P, P'w ; t, A) (—a aQt)t_A]} (12.1)

0

* To the right side of Eq. (11.1) the expression

fr f (P)c dV
b

" "
U exo  — p" 2t

c dv 1„ 


fvf(P)c dV]17„ f vc dv[f(P) U„
Sy  c dV

must be added, if at  t = 0 the initial temperature is not zero, but  f(P).

U n(P)U„(P') exp[— pn2 (t — -À)] (10'.1)



220 L. BROGLI0

The temperature at a generic point Ply of the boundary IV is given by:

T(Pw, t) -  d 11'1(AP  w , P' w ; t ,  A 0)9(P'11,  t  0)

d A [C(Pw,  Inv;  t,  A) (w9)t  (13.1)

The above solution (12.1) and (13.1) will be hereafter called the
"0-Solution".

The Integrodifferential Equation for Kinetic Heating and Radiation

The general problem of kinetic heating and radiation is solved simply
by combining equation (1.1), Introduction, with equation (13.1) i.e. by
supposing, in equation (13.1),  Q  to be given by equation (1.1). The
resulting integrodifferential equation can be easily solved step by step
starting from the initial constant temperature of the body.

The practical procedure can be as follows : equal intervals of time, of
amplitude 8, are considered; it is assumed that, during the interval from
t m3  to  t (ni  +1)3, 0(P11-) has the time constant value  [0(Pw)],,1
given by equation (1.I) where for Ttv the values of surface temperature
for  t= nz8  arc introduced:

[Q(P w)],„ = .97 tt = ma, (T w)  (14.1)

Now equation (13.1) is written in the form of a summation extended
to the time intervals of amplitude 8:

- I

T w(P w , m8) = d1V C(Pw, P' w ; t = ma,  A — i-3)[Z1Q(P' 0 ]i 1
0

(15.1)
where  klQ(P'w)], [Q(P'w)]t [Q(P'w)]i  being the 0,'s given by
(14.1) with 9, — O.

Thus, the method consists in employing equation (14.1) for  m = 0;
then equation (15.1) for  m -- 1;  then equation (14.1) for  m 1;  then
equation (15.1) for  in  2; and so on.

An Analytical Experimental Approach using the Q-Solution

The procedUre described above is dependent upon equation (14.1).
The same procedure can be used, replacing equation (14.1) with wind-
tunnel tests in steady conditions. In such tests the surface heat flows
[Q(Pn-)],,, must be measured, while the surface temperatures must be
kept so as to satisfy the given distribution (  These steady
wind-tunnel tests do not require any internal similarity in the model,
but the problem of controlling the surface temperatures must be solved.

An analytical-experimental investigation in this direction has been
undertaken at the supersonic wind tunnel of the University of Rome.
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PART 2

SOLUTION OF TYPICAL PROBLEMS

General Remarks

As seen in Part 1, the general problem of kinetic heating and radiation
reduces to a simple step-by-step integration once the Q-Solution is
known.

On the other hand, the Q-Solution is completely known once the eigen-
values and eigenfunctions are known. Therefore, the following articles
will be devoted to finding such unknowns for typical bodies, of a special
interest in missile and aircraft design problems.

The Hollow Hemisphere

A hollow homogeneous hemisphere is now considered  (K = c =  1)
and eigenfunctions symmetric with respect to a polar axis are studied.
The outer radius is taken as reference length,  l,  and the non-dimensional
inner radius is denoted as P. By employing polar spherical co-ordinates,
equations (5.1) become:

,a (1,2 au) 1 a . au
sin  —CO) r2p2u 0

or Or I +  sin  ao

O
for r 1 and for r =

U
— = 0
ar

7T au
for  0 =  0 and for  0 = — • — =  0

2 '  OO

The eigenfunctions are found to be:

- -  OA}U =  AA(cos  0)1 Ds(pr)  cos  [p(1 0)]
G(pr)

sin  [p(1  r
pr pr

s =  0, 2, 4, . . . (2.2)

where  A  is the constant of normalization (App. 3), A(cos  0)  is Legendre
polynomial of order  s,  and Cs(poNpr)  are rational functions of the
argument  pr,  related to Bessel functions of order  (s + ) and  —(s
whose expressions are given in App. I.

In equation (2.2), it is:

1
— - tan-1  Os(P)

°s(P
—  13) ±  tan-1  NP)/3 ) 
 •

1 +  °s(Ws(pi3)  =

(3.2)

(j =  1, 2, . . .)(4.2)

(1.2)

being: Os =
C,Ipr — [clIcl(pr)](1)51pr)

[clId(pr)](Cslpr)
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It is to be noticed that, as  p D0 , one has Os - 0, and

°6(P) Q5s(Pg)  0

1 I-  °s(P)Q50/3)
Thus it is seen that the left side of the transcendental equation (4.2)
—which gives the eigenvalues  p2's—is  reduced by the method of lineari-
zation (App. 2) to be the sum of a linear term plus a term which is
damped out as  p 00.

In the particular case of purely radial flow  (s =  0; A, = 1;  C„  = 0 ;
— 1) it is obtained;  00 = (1/pr);  =  (11p)tan-,(11p).

The Hollow Ninite Circular Semicylinder

Also in this case  K = c =1;  the outer radius is taken as reference
length, the inner non-dimensional radius is /3. By using cylindrical co-
ordinates, equations (5.1) become:

02U 1 OU 1 a2u
e2+p2U =  0

r  Or r2 a

au
for  r =1, r =  0 (6.2)

ar

7: 7 au
for  0 = 0 —  0

Equations (6.2) are the same as those providing frequencies and modes
of vibration of a semi-annular membrane.

The solutions of equations (6.2) can be written:

cos sO Ds Cs
= A () [. — cos p(1 — r 0) f, —sin  p(1 —  r  qS)ls = 	

,
' 4

,' •sin sO  pr s  = 1, 3 5 ...
pr

(7.2)

where again  A  is the constant of normalization, and—in this case  D,
and Cs denote infinite series related to the Bessel functions of integer
order  s,  whose expressions are given in App. 1.

Since the expression in square brackets of equation (7.2) is formally the
same as in equation (2.2), equations (3.2), (4.2), (5.2) are still formally valid.

Two-dimensional Stiffener Section

Figure 1 represents the section of a stiffener for aircraft or missile
structures. The problem of transient temperature distribution in it has
been studied in Ref. (10) by an approximate procedure, obtained by
combining Laplace transform with Galerkin method*. The problem
can be solved exactly by the method of Part 1 ; here eigenfunctions and
eigenvalues are determined.

tan ' (5.2)

* In Ref. 10 it is stated that no analytical approach for such a problem seemed

to be possible.
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A

III

FIG. 1. Two-dimensional stiffener section.

Here again  K = c = 1;  then by referring to a system of rectangular
co-ordinates x, y, and taking as reference length the length in x-direction
of the upper leg (other symbols are clearly denoted in Fig. 1), equations
(5.1) become:

22U C2U
ex , +  by, + p2u = o

th
eu= o

1

all along the boundary

Since of the particular shape of the body, each eigenfunction  U  is
given by three separate expressions for the regions I, II, III (Fig. 1).

Equations (8.2) are the same as those providing modes and frequencies
of vibration of a homogeneous free membrane haying the same shape of
the stiffener section.

In the regions I, II, III, of Fig. 1, the expressions of  U  are given by:

(U)1 = A F  cos cos (1 —  x) [p2 -
]

}
,

m7ry 2

m COS COS X ,s1 [p2  m'772j1 xmn y

71' I

0

sin {(1 — .77)\/[ p2 —(m7r/77')2]}

sin {72A/[p2 (m7r/702]}
00

G,  cos f---" COS { yi\/  [p  2— (-61 2] } X

sin  {(a — A/[P2 (s7117)91\
sin {7N[P2 (s7/77)91

} (9.2)

(u)111 =-- G,  cos s" cos1(a y),\I [pi — (s-7-7;) 2] 1
72 I
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where  Gs, ha  are indetermined constants and A is the constant of
normalization (App. III).

It is easily proved that equations (9.2) comply with all the conditions
of the problem, except the condition of continuity of the function U
along the borderlines  AB, BC  (Fig. 1).

If such conditions are imposed, the linear system:

em(P)Fm L pms(P)Gs —0 m = 0, 1, . . .
o

e's(p)a,+= o
o

s = 0, 1, . . .

(10.2)

is obtained, where:

sin w[p 2 — (nisT/02]}

sin {n-V[P' — (nur/ 011
sin fa\Jp2  — (s77/ 7) )11

sin {n"-V[P2 (s7r/n)91

Em( 1)m -  8 1 sin {(a  n') Njp2 — (sir/7)) 91 X

\JP  2-- (s7r /02]
n'[(m-Vn'Y (571/02 —P1

Es( — 1 lfl 's • sin {(1 nW[P2 — (m7,[091 x

(m7r/n")2]

nRn17/7)")2 + (s7r/n)2 — P9
1  m  = 0

m(P)

6'4P)

pnis =

P'sin

} (11.2)

E m =
\ 2  rn

The eigenvalues  p2's are found from the determinantal equation of the
system (10.2). A practical method for its solution is given in Appendix II ;
as customary, the method of linearization is employed (App. II).

APPENDIX I

Values of the Functions Ds(pr), Cs(pr)

Hollow Hemisphere

The functions Cs(pr), Ds(pr) are readily found through the recursion
formulas:

d(Pr)5(d(pr)[(Cpsols]

—( PT)LAdpr)[(Dp,r3d

= 0;D, = 1

s = 1, 2, . . .
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Hollow Semicylinder
It is found:

Ds(pr) = pr[Ps(pr) 1 ( 1)5Q,(pr)]

C3(pr)=pr[Q,(pr) ( 1)81),(pr)]

where P9(pr) and 08(pr) are, in the notations of Ref. 11, the coefficients
of the expressions of Bessel functions as:

Js(Pr)
/(

Z'TPr) = Ps(Pr) cos [Pr — -21-)1;]
Qs(pr)sin {pr —+ -21 ) .frr

Ys(Pr
)A JG17rpr)= P8(pr)sin [pr — (s

Qs(pr)cos [pr(s )

(3.A)

From Ref. 11

(4s2 — 1)(4s2 — 9)
Ps(pr) =1

2 !(8pr)2

(4s2 — 1)(4s2 — 9)(4s2— 25)(4s2-49)
+ •4 !(8pr)4

4s2 — 1 (4s2 — 1)(4s2 — 9)(4s2 — 25)
Qs(pr)+ . .Spr 3 !(8pr)3

APPENDIX 2

Notes on the Method of "Linearization" for the Solution of

Transcendental Equations

General Remarks

In the foregoing problems, the determination of eigenvalues always
reduces to the solution of transcendental equations.

In order to avoid numerical difficulties, the author has developed
a method of "linearization" that can be applied to many eigenvalue prob-
lems of mathematical physics(8, 9). This method simply consists in
transforming the left side of the transcendental equation so as to reduce
it to a linear term plus a quantity which is rapidly damped as the eigen-
value is increasing (hence the name of "linearization").

This allows a very simple procedure of interpolation, and the roots
can be found by employing elementary means in a few minutes.

225

(2.A)

15
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The method is now applied to the transcendental equations obtained
in the foregoing articles.

Hollow Hemisphere and Hollow Semicylinder

When boundary conditions at  r = 1  and  r = /3  are imposed, the
following transcendental equation is obtained:

 sin [p(l Is)] + 	 ± os(p)os(0)
COS [p(1 —f3)]= 0 (4.A)

which can be written in the linearized form:

p(1 — /3) ± tan-1 T's(p) — os(Pg) 

; (j  = 1 2, . . .) (5.A)

The function which is under tan-1 is rapidly decreasing, as p increases,
for all the cases considered. Thus the left side of equation (5.A) rapidly
approaches the linear function p(1 — ß).

for the hollow hemisphere, it is found in general:

lim 08(p) = 0 (6.A)
p ›- co

In fact Cs(p) is of the order of 11p, D, is of the order of unity; so from
equation (5.2) it is seen that 0,(p) is of the order of 1/p. For instance,

0 0(P) - ;

For the hollow semicylinder,
of Ref. 11:

dP„Ps




(6.A)

notations

(7.A)

r_i

=  1(8.A)

0 2(P)

it is found, again with the

dQgk-')

	

[(Qs
d(pr)2pr

)

,(P) -- I ps dQ, Q,

1)s((Ps +
d(pr)2pr

I dpsPs

d(pr)2pr

Now, since

lim Qs — lim dQ8 _

d(pr)2pr)

Hr. dP8  _0;him  P,
pr pr - d(Pr) prd(pr) pr

it is found lirn Os(P) = (- • and the function under tan-1 in (5.A)
tends to zero.

Two-dimensional Stiffener Section

For the sake of simplicity, a symmetric section  (a — 1, 77 = 77')  is
considered, where symmetric and anti-symmetric eigenfunctions can bc
separately studied. For symmetric eigenfunctions  Fm Gm,  and the
two equations (10.2) reduce to one only.
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range 0 p 171Again for the sake of simplicity, the roots in the
are considered. Thus, from equation (11.2):

sin  p
eo(p) pino -----= pin sin  p(1 — 71)

sin(17p)

Em(
[(m7171)2 P2]

sinh {77-v[(m7/77)2 —p2];

sinh { \/[(m7/77)2 —p2])

m(— l ) n s sinh {(1 —7?) [(s7r/702 —p2])


n[(m7r/ 77)2 + (siTrA)2 -- P9

where fi,n —

iii(p)

Pms =

(9.A)

/ (s77) P2]
Thus the determinantal equation can be written:

sin  p
Z1

74, 2
sin 1)(1 —71) =

sin



where:

(10.A)

ei + P11; P12;

P21; 62  -4 P22;zI1 = J1(p) =

(11.A)

A2 = 2(P) =

fi0; P01; P02;

fil; ei + Pn; P12;

P2; P21; e2 + P22; • •

are functions of  p  which have no points of infinity, or discontinuity
or oscillations. Now, letting

Q'( p) =  tan 1
2d-,

; Q" (p) = sin-' [sin  .(2'cosp(1 — 27))] (12.A)

Equation (10.A) reduces to the two equations:

	

=r 1, 2, . . . 1
(13.A)

p - Q' - Q" = (2j ±- 41T j = 0, 1, . . .

The functions .(2', Q" are rapidly damped; therefore equations (13.A)
are the linearized form of the proposed transcendental equation.

Analogously anti-symmetric eigenvalues can he treated.
For non-symmetric sections, or values of  p 7r/A, the method can

still be applied, although, obviously, in a more complicated way.
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APPENDIX 3

Constants of Normalization

Hollow hemisphere

	

Al2  2s27 1 2p12 I

[D(pr) cos p(1 — r -{ {- C(pr)  sin p(1 r x

[1 s(s +1)11

(pr)2 ii
r 1; r g (14.A)

'

I lollow semicylinder

1  TT
= [D(pr)cosp(1 —r -1- 0) C(pr)sinp(1 —r x

[1
(s)

:) 2]; ; r = 1 ; r = g (15.A)

Stiffener section :

	

1 17' sin 2 \/[p2 -- (m7/77')$ +
F,n2 :- .

2v[p-9 —(m7r/ 7y)2] J
0

7)a '  2f 1 -L.sin 2a \/[p2 — (s7r/77)91
8 I ' 2a \ / [p2 __ (s 7 T 177)9 1 +

( _ lyn . s F mG 3[P2 — (sir I ) 9[1'2 — (Innin')2]

Rm.n./ 71,)2 ± (s7 /71)2 p 2]2 x

sin {a-V[p2 --- (s7/17)2]}sin  {(a — 77')A/[p2 — (s77177)11 -
x

sin {-\/[p2

PART 3

RESULTS AND APPLICATIONS

(a) Transient Temperature and Thermal Stresses in a Missile Head

Geometrical feature Might path. The general theory of Part 2, Art. 2,

has been applied to the analysis of the transient temperature and thermal

stresses distribution in a missile head of hemispherical shape. The material

is assumed to be steel, and the external radius is 0.5 m = 19.7 in. Two

cases have been considered, i.e. g - 0.8 and )3 — 0.95, respectively

corresponding to a thick (10 cm) and to a thin (2.5 cm) covering sheet.

A typical flight path has been considered, represented in Fig. 1.3.

The missile is launched at  t 0 with inclination of 60°, and constant

acceleration of  7 g  for 26 sec; thus the altitude of 20,100 m is reached

sin {77V[P2 (s7r1-)91

(m7717)')91sin {(1 — 77) \/[p2 (m7F/7091

sin {71\/[p2 - (m7/7091
(16.A)
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66,000ft) and the Mach number 6. Then the flight goes on at con-
stant altitude and speed for 54 sec, where, with inclination 760, descent
is initiated at constant deceleration (7-57g) in such a way as to reach
sea level in 20 sec at ill = 1.

Initial uniform temperature is 290-K ( 66'F).
Analysis and results. In this numerical example radiation was neglected;

i.e. equation (1.I) was used with a = 0.
The calculation of the coefficient of kinetic heating was performed by

using the formula referring to the stagnation point value(3)for a sphere,
in the laminar case, and for isothermal surfaces. The recovery tempera-
ture to be employed in Crocco's formula was computed by using, as
recovery factor, the square root of the number of Prandtl, taken equal
to 0.72.

M.6

96'413 n,

76.r-

80 100 sec

,rt.5-00 0

-t-
I13. 013 m

FIG. 2. Flight path.

Thus the boundary condition (1.I) is now written:

Qn-= h(T 11.)[T„Ii- (1.3)

Of course, the case of radial flow only needed to be considered. For
such case equation (13.1), written for Q = const., becomes:

2   Pn 2
3t 1

1  pn2 1[ exp(—p„20]

(2.3)

Equations (1.3) (2.3) were employed in the step-by-step integration
described in Part I, Art. 3.

Results are readily found, and reported in Fig. 3 that shows the time-
wise variation of skin temperature and internal temperature for both
cases being considered. Results themselves are self-explanatory. Thermal
stresses were also calculated (Figs. 4a, 4b) with the aid of formulas (253),
ref. 12. Timewise variations of ar (radial stress), a, (circumferential
stress), show, first of all, a rapid increasing and a subsequent decreasing.
This is obviously in connexion with the magnitude of time-gradients of
temperature in the various regions of the head. It is, however, to be
noticed that the maximum stresses are compressive stresses, which occur
in the heated external region.

Tw(t)
1 — 1E13 1 ß n cosp,(1 --ß -I- 2¢.„) cosp17(1 — /3)

1 + 13p,2
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FIG. 3. Timewise variation of temperature in a hemisphere.
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FIG. 4a. Thermal stresses along sheet thickness for hemisphere (13 0.95).
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0.96


0-92

Cre„„x= -115-350 p.sj,

".H\I

(1,(t=00 sec)
_

=8 750 o.$).
,Î

•

1 1 \

0.84 .1--g L3
8

cr,(t. 20sec) r
4' 4

-12 -n -8 -6 -4 -2 0 2 4

x104
FIG. 4b. Thermal stresses along sheet thickness for hemisphere (g = 0.8).

(b)  Transient Temperature Distribution in a Stiffener Section
Geometrical feature and heat flows. The theory developed in Part 2,

Art. 4, was applied to the section of Fig. 5, i.e. a symmetric L-section
with A= A' = ;  b =  1. This was done for the sake of comparison with
the results of Ref. 10.

The heat flow is applied on the upper leg, is constant, and is taken as
reference heat flow.

II

FIG. 5. Dimensions of stiffener section.

Eigenvalues. First of all, symmetric eigenfunctions were considered.

The functions  g(p)  and Q"(p) are decreasing with increasingpr; thus


the values of  p are readily found by cutting the two quasi-straight lines:
Yi(p) = P — s2'(P)+ Q"(p)1

(3.3)
Y2(p) .g(p) Q"(11))

0.88



232 I BROGLIO

with horizontal straight lines 2j7 and (2j - 77 respectively (Fig. 6)
(see also App. 2).
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FIG. 6. Symmetric eigenvalues—Method of linearization.

Analogously antisymmetric eigenvalues were found.
'The values of the roots are collected in Table 1.
It is seen that the number of roots smaller than 67T is sufficient for

practical purposes.

TABLE 1


Eigenvalues

Symmetric
Anti-




Symmetric

Pn

77

0
1
2
3
4

6

0
1-088
2-165
3200.
4.180
5.086
6-000

o
0-567
1-704
2-829
3-933
5-023
6.000
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Final Results and Discussion
Figures 8 and 9 show time variation of temperature for points described

in Fig. 7. Full lines show- results obtained through the method here
presented, dotted lines theoretical results obtained in Ref. 10. Points with
star are results of tests conducted by electric analogue and also reported in
Ref. 10.*

Results indicate a satisfactory agreement with experimental results.
This can be better seen referring to the curve indicating the variation of
T at t = 4 and x = 0.9 for 0 <y 1. The agreement with experi-
mental results (to be considered very accurate) is excellent in all the
range (Fig. 9).

It is to be noticed that the entire calculation can be performed by one
desk computer, by employing conventional electric computing machines,
in about one week.

For the solution of Ref. 10, electronic machines were employed.

GB

. A

Points  x

A 01/6

2.% 0.96

FIG. 7. Points considered in comparisons.

* In Ref. 10, the length of the leg is taken 6 instead of unity (as done here).

For the sake of comparison, corresponding changes in the value of the scale of

non-dimensional times were made to the results here Presented.
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B

X=0 )6 , 1
y='%

Theoretical results by the
method here presented

Theoretical results of ref.10

oExperimental results ref.10

1 2 4

FIG. 8. Comparison with results of Ref. 10.

(Timewise variation of temperature.)

4

	 Theoretical results by the
Method here presented

3  Theoretical results of ref.10
• \

---- Experimental results of
ref.10 0-

2 --

t=4, X=()9/

0
2/6 %

FIG. 9. Comparison with results of Ref. 10. (y-wise variation of
temperature for  t 4, x = 0.9/6.)
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